
141

Bulgarian Academy of Sciences. Space Research and Technology Institute.
Aerospace Research in Bulgaria. 29, 2017, Sofia

GENERATING A PULSE-WIDTH MODULATED SIGNAL BY MEANS
OF TIMER MODULE INTERRUPT OF PIC18F2550 MCU

Konstantin Metodiev

Space Research and Technology Institute – Bulgarian Academy of Sciences
e-mail: komet@space.bas.bg

Abstract
The article hereby examines an approach towards pulse-width modulated (PWM) signal

generation by means of PIC18F2550 microcontroller unit (MCU). The proposed technique employs
the so-called internal interrupt by timer module. This solution may come into use in process
automation as a terminal device, for instance putting in motion a servo motor. Although the MCU
provides a hardware PWM module, it is dependant of the crystal oscillator frequency. Most of the
time, it is difficult to generate a PWM signal at low frequencies. The proposed solution is shown to be
versatile enough and suitable to actuate servomotors widely used in RC hobby activities.

Special attention is given to the MCU software peculiarities. Additional computer
simulation has also been made. The used software was MikroC Pro for PIC and Proteus VMS. The
proposed solution has been shown to operate with sufficient precision. The source code is also
included in the present article.

 1. Introduction

As the abstract suggests, the article topic is generating a PWM signal at
low frequencies, precisely at 50 Hz. Most of the servomotors used by RC hobbyists
nowadays operate at this frequency. The pulse width varies within 1 up to 2 ms. It
is found to be difficult for the hardware to generate a PWM signal with
aforementioned parameters. For instance, if the instruction clock is provided by a
high-speed oscillator at 4 MHz, the PWM signal frequency will vary within 244 Hz
to 1 MHz [1], which is quite above the designated value. In fact, the required PWM
frequency of 50 Hz is achievable by means of the internal oscillator. The oscillator
is capable of providing the MCU with a range of clock frequencies from 31 kHz to
4 MHz [2]. This clock source however is said to be quite temperature dependent
and unstable. Given these impediments, developing an alternative technique to
implement a PWM signal appears to be necessary.

The main purpose of the present article is to demonstrate the ability of a
simple solution to generate a PWM signal at 50 Hz by triggering an internal
interrupt from a Timer 1 module. In order to test the source code, a simulation has

142

been carried out by means of Proteus VMS. A real experiment is also implemented
so as to make a comparison.

 2. Materials and methods

The electronic circuit consists of minimum required parts that make the
MCU running according to Fig. 1, i.e. a high-speed crystal of 20 MHz and
2 capacitors of 15 pF each. These are said to provide the MCU with stable
instruction clock of 5 MHz [2]. In addition to it, three servomotors are connected to
the MCU for verification reasons.

The program algorithm is following. In order to make sure interrupt occurs
every 128 μs, Timer 1 module is initially set to 0xFD80. This value is repeatedly
reset each time Timer 1 overflows. The PWM period is obtained approximately by
getting the product of 156 interrupts times 128 μs equals 19 968 μs. This value is
derived as close as possible for given oscillator clock of 20 MHz and prescaler
value of 1:1.

The number of interrupts is committed to a counter. As soon as the counter
reaches value of 156, start pulse edge is triggered. The edge is rising for all
attached servomotors. The falling edge is triggered afterwards depending upon
what amount each motor has been assigned to. For instance, falling edge might
occur after 12 interrupts times 128 μs each or 1536 μs in total. This value denotes
the pulse width.

Desired time may be calculated by means of formula:

(1) () []sPrescaler
F

TMRxFFFFT
OSC

,4110 −+=

where TMR1 is initial Timer 1 value, hex, and FOSC is crystal oscillator frequency,
Hz. In current case study, TMR1 = 0xFD80, FOSC = 20E+06 Hz, Prescaler = 1.
Hence, for interrupt period it yields T = 128 μs.

The proposed circuit has been put to the test as follows. Three servomotors
are connected to the MCU. Each of them is controlled separately. Therefore, each
servo is expected to rotate at different angle according to duty cycle value of the
fed PWM signal.

 3. Results

Having carried out a simulation by means of Proteus VMS, the obtained
results are depicted in Fig. 1. Each servo cycles through distinct angular positions
in accordance with set value of variables motor 1, 2, 3 in function main, Appendix
1. This value accounts for how many interrupts (128 μs each) have been triggered.
A delay of 500 ms is set between cycles so that each servo has enough time to
complete its stroke. All servos operate the way they are expected.

143

In addition, a real experiment has been carried out by means of HXT
900 Micro Servo 1.6 kg/0.12 s/9 g. There is a full agreement between results
obtained by both physical and simulated experiments.

Fig. 1. Project simulation in Proteus VMS

 4. Discussion

The described test case generates a PWM signal at 50 Hz. The signal at
such a frequency is widely used in remotely controlled vehicles for hobbyists.

The proposed technique might be used in designing supplementary
actuating devices for RC aircraft. In addition, this report might be found useful by
developers who are less experienced in the interrupt technique.

144

 References

1. PIC PWM Calculator & Code Generator. http://www.micro-examples.com/public/
microex-navig/doc/097-pwm-calculator.html (date accessed 10 December 2017).

2. PIC18F2455/2550/4455/4550 Data Sheet, Microchip Technology Inc., 2006.

Appendix: Source code, MikroC Pro for PIC v.6.6.3

unsigned short counter = 0, motor1 = 0, motor2 = 0, motor3 = 0;

//Timer1: Prescaler 1:1; TMR1 Preload = 64896; Actual
//Interrupt Time: 128 us
void InitTimer1(void) {

 T1CON = 0x01;
 TMR1IF_bit = 0;
 TMR1H = 0xFD;
 TMR1L = 0x80;
 TMR1IE_bit = 1;
 INTCON = 0xC0;

 return;
}

void hereGoesMyISR(void) {
 if (TMR1IF_bit == 1) { //Check if Timer1 has
//overflowed
 TMR1IF_bit = 0; //Reset Timer1 flag
 TMR1H = 0xFD;
 TMR1L = 0x80;

 counter++; //Increase counter by 1
 //156 interrupts * 128 us = 19968 usec
 if (counter == 156) { //Check if interrupt was
//triggered 156 times
 PORTB.F2 = 1; //Start pulse to servo motor 1
 PORTB.F3 = 1; //Start pulse to servo motor 2
 PORTB.F4 = 1; //Start pulse to servo motor 3
 counter = 0; //Reset counter
 }
 if (counter == motor1) //Check if time to end left
//servo pulse
 PORTB.F2 = 0; //End pulse to left servo motor
 if (counter == motor2) //Check if time to end right
//servo pulse
 PORTB.F3 = 0; //End pulse to right servo motor

145

 if (counter == motor3) //Check if time to end right
servo pulse
 PORTB.F4 = 0; //End pulse to right servo motor
 }
 return;
}

void interrupt(void) {
 hereGoesMyISR();
}

void main() {

 CMCON = 0x07; //disables comparators
 ADCON1 = 0x0F; //disables analogue functions
 GIE_bit = 1; //Enable global interrupts
 TRISB.F2 = 0; //Set up Port B2 as an output
 TRISB.F3 = 0; //Set up Port B3 as an output
 TRISB.F4 = 0; //Set up Port B4 as an output
 TRISA.F0 = 0; //Set up Port A0 as an output
 PORTA.F0 = 1;

 InitTimer1();

 while(1) { // Set up infinite loop
 motor1 = 6; // Falling edge after 6 interrupts *
//128 us each = 768 us
 motor2 = 6;
 motor3 = 6;
 Delay_ms(500);
 motor1 = 18; // Falling edge after 16 interrupts
//* 128 us each = 2048 us
 motor2 = 18;
 motor3 = 12; // Falling edge after 12 interrupts
//* 128 us each = 1536 us
 Delay_ms(500);
 }
 return;
}

146

ГЕНЕРИРАНЕ НА ШИРОЧИННОИМПУЛСНО МОДУЛИРАН

СИГНАЛ ЧРЕЗ ПРЕКЪСВАНЕ ОТ ТАЙМЕР
НА МИКРОКОНТРОЛЕР PIC18F2550

К. Методиев

Резюме

В настоящия доклад се разглежда подход за генериране на
широчинноимпулсно модулиран (ШИМ) сигнал посредством микро-
контролер PIC18F2550. Предложената техника използва т. нар. вътрешно
прекъсване от таймер. Това решение може да се използва в автоматизиран
процес, като изпълнително звено, например за задвижване на сервомотор.
Въпреки че контролерът разполага с модул за генериране на ШИМ сигнал,
този модул е зависим от честотата на кристалния осцилатор. В повечето
случаи е трудно да се генерира ШИМ сигнал на ниски честоти. Показано е, че
предложеното решение е гъвкаво и подходящо за задвижване на серво-
мотори, широко използвани от ентусиасти в радиоуправляеми модели.

Специално внимание е отделено на особеностите на програмата за
микроконтролера. Допълнително е направена компютърна симулация.
Използван е софтуер MikroC Pro for PIC и Proteus VMS. Показано е, че
предложеното решение функционира със задоволителна точност. Кодът на
програмата също така е публикуван в настоящата статия.

	Bulgarian Academy of Sciences. Space Research and Technology Institute.

